55 Modeling of Thermoelectric Cooling Systems

55.1 Introduction

Thermoelectric cooling systems transfer thermal energy from a fluid at one temperature to thermal energy in a fluid at another temperature by using thermoelectric material and electrical power. A thermal thermoelectric model is presented of a system that consists of a number of cells referred to as thermoelectric building blocks. Each thermoelectric building block has three parts:

A quantity of thermoelectric material (thermoelectric component) through which an electrical current flows
A heat exchanger to cool a fluid (absorb heat from the fluid)
A heat exchanger to heat a fluid (exhaust heat)

55.2 Description of the Mathematical Thermal Thermoelectric Model

A system consists of:

A unit which is divided into a number of identical thermoelectric building blocks (Figure 1a)
Thermoelectric building blocks associated with a thermoelectric component and two heat exchangers (Figure 1b)
Heat exchangers for gases, which can contain moisture, and for liquids
A thermoelectric component, which consists of one thermoelectric element or a thermoelectric module (Figure 1c)
Thermoelectric material characteristics

55.3 Thermoelectric Material and Modules

Thermoelectric Material

Bismuth telluride is the material used for cooling and is characterized by three parameters (expressed in SI units):

\[\rho_{Te} \] Electrical resistivity \(\Omega \cdot m \)
\[\lambda_{Te} \] Thermal conductivity \(W/(m \cdot K) \)
\[\alpha_{Te} \] Seebeck coefficient \(V/K \)

These parameters vary with the average temperature, \(t_{av} \), of the thermoelectric material; generally a polynomial correlation is used with second-order temperature terms. The thermoelectric material is of \(n \)- and \(p \)-type, generally the average values are used (value of \(n \) + value of \(p \))/2.

The values depend on the manufacturer, and those used here are provided by Melcor Inc., the major world supplier of thermoelectric material and modules.

\[\rho_{Te}(t_{av}) = (10.8497 + 0.0535(t_{av} - 23) + 62.8 \cdot 10^{-6} \cdot (t_{av} - 23)^2)/10^6 \]
\[\alpha_{Te}(t_{av}) = (210.9019 + 0.34426(t_{av} - 23) - 0.9904 \cdot 10^{-3} \cdot (t_{av} - 23)^2)/10^6 \]
\[\lambda_{Te}(t_{av}) = 1.65901 - 3.32 \cdot 10^{-3}(t_{av} - 23) + 41.3 \cdot 10^{-6}(t_{av} - 23)^2 \]
material. In addition to the material properties, the module is characterized by two other parameters: \(GF \), the geometric factor of the thermoelectric element = \(A_{Te}/L_{Te} \) and \(Nb_{Te} = \) number of n-type elements + number of p-type elements in the module (sometimes the couple terminology is used: number of couples = \(Nb_{Te}/2 \)).

A thermoelectric module and a single thermoelectric element can be characterized by:

\[
Re_{Te} = Nb_{Te} \cdot \rho_{Te}/GF = \text{total resistance } \Omega \\
S_{Te} = Nb_{Te} \cdot \alpha_{Te} = \text{total Seebeck } V/K \\
C_{Te} = Nb_{Te} \cdot GF \cdot \lambda_{Te} = \text{thermal conductance } W/K
\]

When dealing with one thermoelectric element \(Nb_{Te} = 1 \).

In this model the thermoelectric material characteristics are valid for a single thermoelectric element and for thermoelectric modules that contain a number of elements of n- and p-type material connected electrically in series. In the case of a thermoelectric module these characteristics include the thermal properties of the ceramic plates and of the electrical connectors, etc. This assumption is equivalent to saying that the temperature of the ceramic plate is the same as the temperature of the end of the element.

The following notations correspond either to a single thermoelectric element or to a thermoelectric module: \(\alpha \), the Seebeck coefficient, and \(C \), the thermal conductance. A distinction is drawn between the electrical resistance of the cooled side and that of the heated side because when using a single thermoelectric element, the heat exchangers, which conduct the electricity between the pieces of thermoelectric material, have a non-negligible electrical resistance. This is defined as \(R_{Co} \) for the cooled side and \(R_{He} \) for the heated side.

The relevant equations are presented in Section 55.5. The terms representing Joule heating include for each side, half of the electrical resistance of the thermoelectric material plus the electrical resistance of the corresponding heat exchanger and are given by:

\[
Re_{Co} = Re_{Te}/2 + R_{Co} \text{ and } Re_{He} = Re_{Te}/2 + R_{He}
\]

In the case of modules, electricity is conducted from one module to the next by wires which are “dimensioned” so as to have a negligible electrical resistance, in which case \(Re_{Co} = Re_{He} = Re_{Mod}/2 \).

55.4 Heat Exchanger Characterization

An air heat exchanger and a water heat exchanger are shown schematically in Figure 2. When discussing the cooled side a subscript “Co” is added and when dealing with the heated side, a subscript “He.” The model includes the thermal resistance of both heat exchangers and the thermal conductance \((C_{ni}) \) of the seal and the air gap between the two heat exchangers. For practical
Thermal Resistance Through a Solid

The thermal resistance through the solid, R_{tBa} (thermal base resistance, K/W):

- Water heat exchanger, it is between the interface of the thermoelectric material and the ABa in contact with the water.
- Air heat exchanger, it is the thermal resistance between the interface of the thermoelectric material and the area ABa at the base on which the fins are located; it is found more convenient to use this area rather than the area of the fins because it simplifies the calculation of R_{tBa}.

Contribution Due to Convection

The contribution due to convection R_{tHy} (thermal hydraulic resistance, K/W) can be expressed as

$$R_{tHy} = \frac{1}{(h_{Ba} \cdot ABa)}$$

where ABa is the area of the base of the heat exchanger, h_{Ba} is the convection coefficient as seen by the surface of the fluid, $W/(m^2 \cdot K)$.

In the case of liquid heat exchangers the area of the liquid in contact with the base is ABa, and the convection coefficient of the fluid at the interface between the fluid and the walls of the base is h_{Ba}. An example with water is given in the Appendix.

In the case of air heat exchangers with fins R_{tHy} is calculated in the following way: the base area of ABa, the fins on the base have an area of A_{fin}, a fin efficiency of η_{fin} and the convection coefficient of the fins is h_{fin}. Consequently $h_{Ba} = h_{fin} \cdot A_{fin} \cdot \eta_{fin}/ABa$ with $\eta_{fin} = (t_{fin} - t_{air})/(t_{base} - t_{air})$. An example for air is also given in the Appendix.

Thermal Conductance of a Seal

The term C_{xt} represents the thermal conductance exterior (xt) to the thermoelectric material, includes heat conduction through the air gap between the two heat exchangers, through the tightening mechanism. Experience has led the author to express this heat between the temperature of the base of the interface temperatures of the thermoelectric material because the average temperature of the side of the base is much closer to base temperature than to the temperature (tTE) at the ends of the thermoelectric material.

55.5 Equations for the Building Block

Equations

A set of equations for noncondensing air and for water, which correspond to the following parameters, can be written:

Thermal power pumped out of cooled fluid

$$P_{Co} = -S_{te} \cdot i^* (t_{TECo} + 273) + R_{eCo} \cdot i^2 + C^* (t_{TEHe} - t_{TECo})$$
$$+ C_{xt} \cdot (t_{BaHe} - t_{BaCo})$$

Thermal power exiting the module which is heating the fluid

$$P_{He} = S_{te} \cdot i^* (t_{TEHe} + 273) + R_{eHe} \cdot i^2 - C^* (t_{TEHe} - t_{TECo})$$
$$+ C_{xt} \cdot (t_{BaHe} - t_{BaCo})$$

Thermoelectric material temperature in contact with cooled base

$$t_{TECo} = t_{FLCo} + P_{Co} \cdot (R_{tBaCo} + R_{tHyCo})$$
Modeling of Thermoelectric Cooling Systems

Base temperature at interface with cooled fluid

\[tB_{aCo} = tF_{lCo} + P_{Co} \cdot R_{tHyCo} \]
(5)

Base temperature at interface with heated fluid

\[tB_{aHe} = tF_{lHe} + P_{He} \cdot R_{tHyHe} \]
(6)

Solution

The six equations have six unknowns: \(tT_{eCo} \), \(tT_{eHe} \), \(tB_{aCo} \), \(tB_{aHe} \), \(P_{Co} \), and \(P_{He} \). The inputs consist of the operating conditions: \(i \), \(tF_{lCo} \), \(tF_{lHe} \); the characteristics of the thermoelectric material \(S_{C}, C_{e} \), and \(R_{eCo}, R_{eHe} \), which include electrical resistances between the pieces of thermoelectric material and the characteristics of the heat exchangers, i.e., \(R_{tB_{aCo}}, R_{tB_{aHe}}, R_{tHyCo}, R_{tHyHe}, C_{xt} \).

The equations are linear and the system is readily solved. The characteristics of the thermoelectric material are a function of their average temperature so an iteration method is necessary.

55.6 Inlet and Exit Equations

The above equations correspond to the thermoelectric building block, but as there are a succession of building blocks, the exit conditions from the inlet conditions\(^2\) and the powers of each building block are calculated for each of the thermoelectric building blocks.

For noncondensing air and for a liquid such as water the following equations can be written:

\[tF_{lCo,ex} = tF_{lCo,in} + P_{Co}/Q_{Co} \cdot C_{pCo} \] where \(Q_{Co} \) is the mass flow rate of the fluid (kg/s) and \(C_{pCo} \) is the specific heat of the fluid in J/(kg \cdot K).

A model has been developed by Buffet and Stockholm\(^2,3\) for condensing air.

55.7 Calculations of a Unit

Fluids and Temperature

The level of complexity of the calculation depends on whether a gas (air) or a liquid (water) is being considered. A thermoelectric building block varies in size and depends on the amount of thermoelectric material per building block, that is, the total area of thermoelectric material at the cold junction. The area of thermoelectric elements ranges from 15 mm\(^2\) to more than 150 mm\(^2\) while the module can exceed 500 mm\(^2\). The cooling is generally between 2 and 10 W per cm\(^2\).

Assuming values of 150 mm\(^2\) and 3 W/cm\(^2\), with a coefficient of performance (COP) of 1, this corresponds to a cooling power of 4.5 W/cm\(^2\) and a heating power per building block of 9 W/cm\(^2\).

The mass flow rate of water through the base of a building block containing tubes is of the order of 0.15 kg/s while in the case of air the mass flow rate is of the order of 10 g/s. With a cooling power of 100 W the corresponding changes in temperature \(\Delta T \) between inlet and outlet of a unit for air and water are as follows:

\[100 \ W = (0.010 \ kg/s) \cdot (1006 \ J/(kg \cdot K)) \cdot \Delta T \ \text{so} \ \Delta T = 10 K \]

\[100 \ W = (0.15 \ kg/s) \cdot (4,186 \ J/kg \cdot K) \cdot \Delta T \ \text{so} \ \Delta T = 0.16 K \]

Water-Water

Therefore, with a water-water unit containing 500 building blocks in series on the cooled water
important. Buffet has shown that the optimization is quite different to that of passive heat exchangers with two liquids.

When the temperature variations of the water are 10°C or less it is sufficient to calculate the performances of the average building block. This is the building block with fluid temperatures that correspond to the average fluid temperature of each circuit. This means that it is only necessary to calculate one building block, the total power being equal to the power of the building block multiplied by their number.

Water-Air

Consider the case of a water-air system containing, for example, 200 building blocks of which 50 are in parallel on the air and therefore 4 are in series. A schematic is shown in Figure 3; the individual building blocks are not shown. All the building blocks are in series in the water circuit, and as the water tube goes through the unit four times, there are four building blocks in series in the air circuit. The darkened areas correspond to the thermoelectric material.

The calculation is carried out for each row of building blocks in parallel in the air circuit. The building block is calculated with a water temperature equal to the average temperature of the water in each row of building blocks. So only the performances of four building blocks are required.

Air-Air

An air-air unit is shown schematically in three dimensions in Figure 4. For this cross flow it is necessary to calculate each building block shown in Figure 5. The calculation sequence can be ABCD then EFGH or AE then BF, CG and DH. It does not make any difference which sequence is chosen as in both cases all the building blocks are calculated. The total cooling power is obtained by adding the powers of each of the building blocks. The same is done for the heating and the electrical powers.

The average exit conditions are obtained by first
Modeling of Thermoelectric Cooling Systems

There are two possible ways of calculating the unit:
AE then BF then CG then DH
or ABCD then EFGH

FIGURE 5 Air-air unit cross-flow calculation.

55.8 Conclusions

The modeling of thermoelectric systems based on the concept of building blocks has been presented. The parameters that are necessary to characterize a building block are given, together with the procedure to calculate a system. It has been shown that for water-water systems it is only necessary to calculate the thermoelectric building block that “sees” the average hot-side and the average cold-side fluid temperatures. For water-air units the average thermoelectric building block in each row along the air circuit has to be calculated. For air-to-air systems each thermoelectric building block which has different inlet conditions has to be calculated.

References

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Units</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{Ba_{Co}}$</td>
<td>m^2</td>
<td>Area of cooled base</td>
</tr>
<tr>
<td>$A_{Ba_{He}}$</td>
<td>m^2</td>
<td>Area of heated base</td>
</tr>
<tr>
<td>A_{Fin}</td>
<td>m^2</td>
<td>Area of fin</td>
</tr>
<tr>
<td>A_{Te}</td>
<td></td>
<td>Area of one thermoelectric element</td>
</tr>
<tr>
<td>C_{xt}</td>
<td>W/K</td>
<td>Thermal conductance of seal</td>
</tr>
<tr>
<td>$C_{p_{Co}}$</td>
<td>$J/(kg \cdot K)$</td>
<td>Heat capacity of cooled fluid</td>
</tr>
<tr>
<td>eff_{Fin}</td>
<td>dimensionless</td>
<td>Fin efficiency = average t of fin/t at base of fin</td>
</tr>
<tr>
<td>GF</td>
<td>m</td>
<td>Geometric factor of thermoelectric element</td>
</tr>
<tr>
<td>h_{Fin}</td>
<td>$W/(m^2 \cdot K)$</td>
<td>Convection coefficient of fin</td>
</tr>
<tr>
<td>i</td>
<td>Λ</td>
<td>Electrical current</td>
</tr>
<tr>
<td>L_{Te}</td>
<td>m</td>
<td>Length of thermoelectric element</td>
</tr>
<tr>
<td>$N_{b_{Te}}$</td>
<td>dimensionless</td>
<td>Number of thermoelectric elements in the module</td>
</tr>
<tr>
<td>P_{Co}</td>
<td>W</td>
<td>Cooling power</td>
</tr>
<tr>
<td>P_{He}</td>
<td>W</td>
<td>Heating power</td>
</tr>
<tr>
<td>Q_{Co}</td>
<td>kg/s</td>
<td>Mass flow rate of cooled fluid</td>
</tr>
<tr>
<td>R_{Co}</td>
<td>Ω</td>
<td>Electrical resistance of cold-side heat exchanger if i circuit</td>
</tr>
<tr>
<td>Re_{Co}</td>
<td>Ω</td>
<td>Electrical resistance $Re_{Te}/2 + R_{Co}$</td>
</tr>
<tr>
<td>Re_{He}</td>
<td>Ω</td>
<td>Electrical resistance $Re_{Te}/2 + R_{He}$</td>
</tr>
<tr>
<td>R_{He}</td>
<td>Ω</td>
<td>Electrical resistance of cold-side heat exchanger if i electrical circuit</td>
</tr>
<tr>
<td>$Rt_{Ba_{Co}}$</td>
<td>K/W</td>
<td>Thermal resistance of cooled base</td>
</tr>
<tr>
<td>$Rt_{Ba_{He}}$</td>
<td>K/W</td>
<td>Thermal resistance of heated base</td>
</tr>
<tr>
<td>$Rt_{Hy_{Co}}$</td>
<td>K/W</td>
<td>Thermal hydraulic resistance of cooled base</td>
</tr>
<tr>
<td>$Rt_{Hy_{He}}$</td>
<td>K/W</td>
<td>Thermal hydraulic resistance of heated base</td>
</tr>
<tr>
<td>t_{av}</td>
<td>$^\circ C$</td>
<td>Average temperature of thermoelectric material</td>
</tr>
<tr>
<td>$t_{FL_{Co}}$</td>
<td>$^\circ C$</td>
<td>Temperature of cooled fluid</td>
</tr>
<tr>
<td>$t_{FL_{Co,ex}}$</td>
<td>$^\circ C$</td>
<td>Temperature of cooled fluid at exit of building block</td>
</tr>
<tr>
<td>$t_{FL_{Co, in}}$</td>
<td>$^\circ C$</td>
<td>Temperature of cooled fluid at inlet of building block</td>
</tr>
<tr>
<td>$t_{FL_{He}}$</td>
<td>$^\circ C$</td>
<td>Temperature of heated fluid</td>
</tr>
<tr>
<td>$t_{Te_{Co}}$</td>
<td>$^\circ C$</td>
<td>Temperature of thermoelectric material at the cooled end</td>
</tr>
<tr>
<td>$t_{Te_{He}}$</td>
<td>$^\circ C$</td>
<td>Temperature of thermoelectric material at the heated end</td>
</tr>
<tr>
<td>ρ_{Te}</td>
<td>$\Omega \cdot m$</td>
<td>Thermoelectric material electrical resistivity</td>
</tr>
<tr>
<td>λ_{Te}</td>
<td>$W/(m \cdot K)$</td>
<td>Thermoelectric material thermal conductivity</td>
</tr>
<tr>
<td>α_{Te}</td>
<td>V/K</td>
<td>Thermoelectric material Seebeck coefficient</td>
</tr>
<tr>
<td>C_{Te}</td>
<td>W/K</td>
<td>Thermoelectric thermal conductance = $N_{b_{Te}} \cdot$</td>
</tr>
</tbody>
</table>
Appendices

1. Convection coefficient of water in tubes

Generally considered, water flowing in circular ducts with a Reynolds number N_{Rey} in excess of 5000 with straight tubes having a length of less than 35 diameters. Experimentation has confirmed the formula given by MacAdams:

$$h = 1480 \cdot (1 + 0.015t)(V^{0.8})/D^{0.2} \text{ in SI units}$$
$$h = \text{convection coefficient } W/(m^2 \cdot K)$$
$$t = \text{temperature of the water } ^\circ C$$
$$V = \text{velocity of the water, } m/s$$
$$D = \text{diameter of the tube, } m$$

2. Convection coefficient of dry air

There exists many shapes of fins: flat fins, wavy fins, lanced fins, etc. Kays and London\(^3\) give the convection coefficient in a nondimensional form.

When dealing with air the convection coefficient h (W/(m$^2 \cdot K$) can be expressed as $h = a \cdot V^b$ where a and b are constants for a specific heat exchanger and for a defined range of velocities V in m/s.

A typical formula for wavy fins in air around the ambient temperature with velocities between 2 and 10 m/s in turbulent flow is $h = 21 \cdot V^{0.635}$.